2019 Consumer Confidence Report

Water System Name: South Willows Industrial Park

Report Date: 3/2/2020

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 to December 31, 2019 and may include earlier monitoring data.

Este informe contiene información muy importante sobre su agua para beber. Favor de comunicarse [South Willows Industrial Park] a [201 N. Lassen St, Willows CA 95988, 530-934-7041] para asistirlo en español.

这份报告含有关于您的饮用水的重要讯息。请用以下地址和电话联系 [South Willows Industrial Park] 以获得中文的帮助：[201 N. Lassen St Willows CA 95988][530-934-7041]

Báo cáo này chứa thông tin quan trọng về nước uống của bạn. Xin vui lòng liên hệ [South Willows Industrial Park] tại [201 N. Lassen St Willows CA 95988, 530-934-7041] để được hỗ trợ giúp bằng tiếng Việt.

Type of water source(s) in use: Domestic Wells

Name & general location of source(s): Well, Located at the corner of County Road 57 and South Tehama Street (Hwy 99) Well 2(standby fire flow well) located 1000 feet East of Well 1.

Drinking Water Source Assessment information:

Time and place of regularly scheduled board meetings for public participation: N/A

For more information, contact: Steve Soeth / City of Willows Phone: (530)934-7041

TERMS USED IN THIS REPORT

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (U.S. EPA).

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Primary Drinking Water Standards (PDWS): MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

Secondary Drinking Water Standards (SDWS): MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Variance and Exemption: Permissions from the State Water Resources Control Board (State Board) to exceed an MCL or not comply with a treatment technique under certain conditions.

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

ND: not detectable at testing limit

ppm: parts per million or milligrams per liter (mg/L)

ppb: parts per billion or micrograms per liter (µg/L)

ppt: parts per trillion or nanograms per liter (ng/L)

ppq: parts per quadrillion or picogram per liter (pg/L)

pCi/L: picocuries per liter (a measure of radiation)
The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- **Microbial contaminants**, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- **Inorganic contaminants**, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- **Pesticides and herbicides**, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- **Organic chemical contaminants**, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- **Radioactive contaminants**, that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the U.S. EPA and the State Board prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2, 3, 4, 5, and 6 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of an AL, MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report.

TABLE 1 – SAMPLING RESULTS SHOWING THE DETECTION OF COLIFORM BACTERIA

<table>
<thead>
<tr>
<th>Microbiological Contaminants (complete if bacteria detected)</th>
<th>Highest No. of Detections</th>
<th>No. of Months in Violation</th>
<th>MCL</th>
<th>MCLG</th>
<th>Typical Source of Bacteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Coliform Bacteria (state Total Coliform Rule)</td>
<td>(In a month) 0</td>
<td>0</td>
<td>1 positive monthly sample</td>
<td>0</td>
<td>Naturally present in the environment</td>
</tr>
<tr>
<td>Fecal Coliform or E. coli (state Total Coliform Rule)</td>
<td>(In the year) 0</td>
<td>0</td>
<td>A routine sample and a repeat sample are total coliform positive, and one of these is also fecal coliform or E. coli positive</td>
<td>(a)</td>
<td>Human and animal fecal waste</td>
</tr>
<tr>
<td>E. coli (federal Revised Total Coliform Rule)</td>
<td>(In the year) 0</td>
<td>0</td>
<td>(a)</td>
<td></td>
<td>Human and animal fecal waste</td>
</tr>
</tbody>
</table>

(a) Routine and repeat samples are total coliform-positive and either is E. coli-positive or system fails to take repeat samples following E. coli-positive routine sample or system fails to analyze total coliform-positive repeat sample for E. coli.

TABLE 2 – SAMPLING RESULTS SHOWING THE DETECTION OF LEAD AND COPPER

<table>
<thead>
<tr>
<th>Lead and Copper (complete if lead or copper detected in the last sample set)</th>
<th>Sample Date</th>
<th>No. of Samples Collected</th>
<th>90th Percentile Level Detected</th>
<th>No. Sites Exceeding AL</th>
<th>AL</th>
<th>PHG</th>
<th>No. of Schools Requesting Lead Sampling</th>
<th>Typical Source of Contaminant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead (ppb)</td>
<td>9/10/19</td>
<td>5</td>
<td>ND</td>
<td>0</td>
<td>15</td>
<td>0.2</td>
<td></td>
<td>Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits</td>
</tr>
<tr>
<td>Copper (ppm)</td>
<td>9/10/19</td>
<td>5</td>
<td>0.1595</td>
<td>0</td>
<td>1.3</td>
<td>0.3</td>
<td></td>
<td>Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives</td>
</tr>
</tbody>
</table>
TABLE 3 – SAMPLING RESULTS FOR SODIUM AND HARDNESS

<table>
<thead>
<tr>
<th>Chemical or Constituent (and reporting units)</th>
<th>Sample Date</th>
<th>Level Detected</th>
<th>Range of Detectations</th>
<th>MCL</th>
<th>PHG (MCLG)</th>
<th>Typical Source of Contaminant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium (ppm)</td>
<td>N/A</td>
<td></td>
<td></td>
<td>None</td>
<td>None</td>
<td>Salt present in the water and is generally naturally occurring</td>
</tr>
<tr>
<td>Hardness (ppm)</td>
<td>N/A</td>
<td></td>
<td></td>
<td>None</td>
<td>None</td>
<td>Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring</td>
</tr>
</tbody>
</table>

TABLE 4 – DETECTION OF CONTAMINANTS WITH A PRIMARY DRINKING WATER STANDARD

<table>
<thead>
<tr>
<th>Chemical or Constituent (and reporting units)</th>
<th>Sample Date</th>
<th>Level Detected</th>
<th>Range of Detectations</th>
<th>MCL [MRDL]</th>
<th>PHG (MCLG) [MRDLG]</th>
<th>Typical Source of Contaminant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrate, ppm Well#1</td>
<td>10/7/19</td>
<td>1.2</td>
<td></td>
<td>10</td>
<td>10</td>
<td>Runoff and leaching from fertilizer use, leaching from septic tanks, sewage, erosion or natural deposits</td>
</tr>
<tr>
<td>Nitrate, ppm, Well#2</td>
<td>12/4/19</td>
<td>ND</td>
<td></td>
<td>10</td>
<td>10</td>
<td>Same as above</td>
</tr>
<tr>
<td>Fluoride, ppm</td>
<td>10/10/18</td>
<td>0.3</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromium VI, ppb (Hexavalent Chromium)</td>
<td>6/3/19</td>
<td>21.0 (see Exhibit B)</td>
<td></td>
<td>0.010 (See note 1)</td>
<td>0.02</td>
<td>Industrial runoff, naturally occurring</td>
</tr>
<tr>
<td>1,2,3-Trichloropropane ppb</td>
<td>7/5/18</td>
<td>ND</td>
<td></td>
<td>0.005</td>
<td></td>
<td>Industrial runoff</td>
</tr>
</tbody>
</table>

TABLE 5 – DETECTION OF CONTAMINANTS WITH A SECONDARY DRINKING WATER STANDARD

<table>
<thead>
<tr>
<th>Chemical or Constituent (and reporting units)</th>
<th>Sample Date</th>
<th>Level Detected</th>
<th>Range of Detectations</th>
<th>SMCL</th>
<th>PHG (MCLG)</th>
<th>Typical Source of Contaminant</th>
</tr>
</thead>
</table>

TABLE 6 – DETECTION OF UNREGULATED CONTAMINANTS

<table>
<thead>
<tr>
<th>Chemical or Constituent (and reporting units)</th>
<th>Sample Date</th>
<th>Level Detected</th>
<th>Range of Detectations</th>
<th>Notification Level</th>
<th>Health Effects Language</th>
</tr>
</thead>
</table>

NOTE 1, There is currently no MCL for hexavalent chromium. The previous MCL of 0.010mg/l was withdrawn on September 11, 2017.

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA’s Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead-Specific Language: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. [ENTER WATER SYSTEM’S NAME HERE] is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. [OPTIONAL: If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants.] If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4791) or at http://www.epa.gov/lead.
Summary Information for Violation of a MCL, MRDL, AI, TT, or Monitoring and Reporting Requirement

<table>
<thead>
<tr>
<th>Violation</th>
<th>Explanation</th>
<th>Duration</th>
<th>Actions Taken to Correct the Violation</th>
<th>Health Effects Language</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For Water Systems Providing Groundwater as a Source of Drinking Water

TABLE 7 – SAMPLING RESULTS SHOWING FECAL INDICATOR-POSITIVE GROUNDWATER SOURCE SAMPLES

<table>
<thead>
<tr>
<th>Microbiological Contaminants (complete if fecal-indicator detected)</th>
<th>Total No. of Detections</th>
<th>Sample Dates</th>
<th>MCL [MRDL]</th>
<th>PHIG (MCLG) [MRDLG]</th>
<th>Typical Source of Contaminant</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli</td>
<td>(In the year) 0</td>
<td></td>
<td>0</td>
<td>(0)</td>
<td>Human and animal fecal waste</td>
</tr>
<tr>
<td>Enterococci</td>
<td>(In the year) 0</td>
<td></td>
<td>TT</td>
<td>N/A</td>
<td>Human and animal fecal waste</td>
</tr>
<tr>
<td>Coliphage</td>
<td>(In the year) 0</td>
<td></td>
<td>TT</td>
<td>N/A</td>
<td>Human and animal fecal waste</td>
</tr>
</tbody>
</table>

Summary Information for Fecal Indicator-Positive Groundwater Source Samples, Uncorrected Significant Deficiencies, or Groundwater TT

SPECIAL NOTICE OF FECAL INDICATOR-POSITIVE GROUNDWATER SOURCE SAMPLE

SPECIAL NOTICE FOR UNCORRECTED SIGNIFICANT DEFICIENCIES

<table>
<thead>
<tr>
<th>TT Violation</th>
<th>Explanation</th>
<th>Duration</th>
<th>Actions Taken to Correct the Violation</th>
<th>Health Effects Language</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For Systems Providing Surface Water as a Source of Drinking Water

TABLE 8 - SAMPLING RESULTS SHOWING TREATMENT OF SURFACE WATER SOURCES

<table>
<thead>
<tr>
<th>Treatment Technique (a)</th>
<th>(Type of approved filtration technology used)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Turbidity Performance Standards \(^{(b)}\) \(^{(b)}\) | Turbidity of the filtered water must:
1 – Be less than or equal to ____ NTU in 95% of measurements in a month.
2 – Not exceed ____ NTU for more than eight consecutive hours.
3 – Not exceed ____ NTU at any time. |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(that must be met through the water treatment process)</td>
<td></td>
</tr>
<tr>
<td>Lowest monthly percentage of samples that met Turbidity Performance Standard No. 1.</td>
<td></td>
</tr>
<tr>
<td>Highest single turbidity measurement during the year</td>
<td></td>
</tr>
<tr>
<td>Number of violations of any surface water treatment requirements</td>
<td></td>
</tr>
</tbody>
</table>

(a) A required process intended to reduce the level of a contaminant in drinking water.

(b) Turbidity (measured in NTU) is a measurement of the cloudiness of water and is a good indicator of water quality and filtration performance. Turbidity results which meet performance standards are considered to be in compliance with filtration requirements.

Summary Information for Violation of a Surface Water TT

| VIOLATION OF A SURFACE WATER TT |
|---|---|---|---|
| TT Violation | Explanation | Duration | Actions Taken to Correct the Violation | Health Effects Language |
| | | | | |

Summary Information for Operating Under a Variance or Exemption

Summary Information for Federal Revised Total Coliform Rule

Level 1 and Level 2 Assessment Requirements

Level 1 or Level 2 Assessment Requirement not Due to an *E. coli* MCL Violation

Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful, waterborne pathogens may be present or that a potential pathway exists through which contamination may enter the drinking water distribution system. We found coliforms indicating the need to look for potential problems in water treatment or distribution. When this occurs, we are required to conduct assessment(s) to identify problems and to correct any problems that were found during these assessments.

During the past year we were required to conduct [INSERT NUMBER OF LEVEL 1 ASSESSMENTS] Level 1 assessment(s). [INSERT NUMBER OF LEVEL 1 ASSESSMENTS] Level 1 assessment(s) were completed. In addition, we were required to take [INSERT NUMBER OF CORRECTIVE ACTIONS] corrective actions and we completed [INSERT NUMBER OF CORRECTIVE ACTIONS] of these actions.

During the past year [INSERT NUMBER OF LEVEL 2 ASSESSMENTS] Level 2 assessments were required to be completed for our water system. [INSERT NUMBER OF LEVEL 2 ASSESSMENTS] Level 2 assessments were
completed. In addition, we were required to take \textbf{[INSERT NUMBER OF CORRECTIVE ACTIONS]} corrective actions and we completed \textbf{[INSERT NUMBER OF CORRECTIVE ACTIONS]} of these actions.

\textbf{Level 2 Assessment Requirement Due to an }\textit{E. coli} MCL Violation

\textit{E. coli} are bacteria whose presence indicates that the water may be contaminated with human or animal wastes. Human pathogens in these wastes can cause short-term effects, such as diarrhea, cramps, nausea, headaches, or other symptoms. They may pose a greater health risk for infants, young children, the elderly, and people with severely-compromised immune systems. We found \textit{E. coli} bacteria, indicating the need to look for potential problems in water treatment or distribution. When this occurs, we are required to conduct assessment(s) identify problems and to correct any problems that were found during these assessments.

We were required to complete a Level 2 assessment because we found \textit{E. coli} in our water system. In addition, we were required to take \textbf{[INSERT NUMBER OF CORRECTIVE ACTIONS]} corrective actions and we completed \textbf{[INSERT NUMBER OF CORRECTIVE ACTIONS]} of these actions.
IMPORTANT INFORMATION ABOUT YOUR DRINKING WATER
Este informe contiene información muy importante sobre su agua potable.
Tradúzcalo o hable con alguien que lo entienda bien.

South Willows Industrial Park
Has
Levels of Hexavalent Chromium above the Drinking Water Standard

Pursuant to a California regulation adopted July 1, 2014, the level of a substance called hexavalent chromium should not exceed 0.010 mg/l in drinking water provided by a public water system. This number is known as the maximum contaminant level or MCL. Senate Bill 385, which became law effective September 4, 2015, (the previous MCL of 0.010 mg/L was withdrawn on September 11, 2017) allows public water systems, with sources that produce water with a hexavalent chromium concentration above the MCL, time to come into compliance. So long as a public water system complies with the new law (Health & Safety Code, section 116431), it will not be deemed in violation of the MCL. In addition to other requirements, the new law requires the water system to come into compliance at the earliest feasible date prior to January 1, 2020.

After monitoring for hexavalent chromium, the level of hexavalent chromium in the water provided by our water system is determined to be in a range of 0.010 to 0.019 mg/l.

Although this is not an emergency, as our customer, you have a right to know what you should do, what happened, and what we are doing to correct this situation.

We routinely monitor for the presence of drinking water contaminants. We will continue to monitor for the level of hexavalent chromium and provide you with a yearly notice.

What should I do?

- This is not an emergency. If it had been, you would have been notified immediately. However, some people who drink water containing hexavalent chromium in excess of the MCL over many years may have an increased risk of getting cancer.

- If you have other health issues or concerns regarding your consumption of this water, you may wish to consult your doctor.
Exhibit B

If you wish to avoid drinking the water provided by our water system, you may wish to use alternative water for drinking and cooking.1

Alternative Drinking Water

The South Willows Industrial Park has identified various locations for alternative drinking water.

Bottled water can be purchased at retail stores in the Willows area such as Wal-Mart and Mar-Val market. Specific Information on Hexavalent Chromium levels in bottled water can be obtained from the bottled water website or the Food and Drug Branch.

What happened? What is being done?

We intend to take steps to provide water with hexavalent chromium at or below the MCL. However, to achieve this will take time and money. We have a plan for achieving compliance with the MCL by November 2019, which we believe is the earliest feasible date considering the complexity of the plan and the amount of funding required. We submitted our proposed compliance plan to the State Water Resources Control Board’s Division of Drinking Water for its review and approval.

The approved compliance plan contains the following actions that the South Willows Industrial Park will be taking, including a milestone schedule. This notice will be updated twice each year.

Actions to be taken,

1. The South Willows Industrial Park’s plan is to consolidate with California Water Service. This will allow CalWater to connect their water system into the South Willows Industrial Park’s system which allows for the delivery of water that meets the State of California’s standards for Chromium 6.

2. Currently there is a project underway which will extend CalWater infrastructure towards the South Willows Industrial Park’s system. The South Willows Industrial Park is working toward an agreement with CalWater to continue these improvements all the way to The South Willows Industrial Park’s infrastructure.

3. Funding for the project – best estimate of funding required for the project is $350,000.00. The South Willows Industrial Park is exploring grant opportunities as well as loan financing for the project.

South Willows Industrial Park (City of Willows)
4. Timeline and milestones,

Negotiations DONE.

Financial *

Engineering *

Environmental *

Contracting *

Construction Phase 1 *

Construction Phase 2 *

Disconnection of Well 1 *

Certify System *

* Project timeline put on hold pending outcome of new MCL for Hexavalent Chromium. THE SOUTH WILLOWS INDUSTRIAL PARK STILL PLANS TO CONSOLIDATE WITH CALIFORNIA WATER SERVICE.

For more information go to:

or please contact Steve Soeth at 530-934-7041 or 201 North Lassen Street Willows CA 95988.

Please share this information with all the other people who drink this water, especially those who may not have received this notice directly. You can do this by posting this public notice in a public place or distributing copies by hand or mail.

This notice is being sent to you by the South Willows Industrial Park